Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255550

RESUMO

Welding high-strength 6xxx aluminum alloys using a commercial ER4043 filler often results in inferior joint strength. This study investigated the effects of newly developed Al-Si-Mg filler metals with varying Mg (0.6-1.4 wt.%) and Mn (0.25-0.5 wt.%) contents on the microstructure evolution and mechanical performance of high-strength AA6011-T6 plates using gas metal arc welding. Two commercial fillers, ER4043 and ER4943, were used as references for comparison. The results revealed that increasing the Mg and Mn contents in the novel fillers resulted in sufficiently high alloying elements in the fusion zone (FZ), leading to higher microhardness. Under as-welded conditions, the weakest region of the joint was the heat-affected zone (HAZ). The joint strength was almost independent of the filler type and was controlled by the HAZ strength, measuring a UTS of 230 and 241 MPa for ER4043 and the other joints, respectively. The higher Mg contents in the novel fillers promoted the precipitation of a large volume fraction of fine ß″-MgSi in the FZ during post-weld heat treatment (PWHT), resulting in superior strength and higher welding efficiency relative to the reference fillers. The optimal Mg content of the novel fillers was 0.6 wt.%. Increasing the Mn content of the filler metal had an insignificant effect. The FMg0.6 filler with 0.6% Mg achieved the best combination of strength (UTS of 410 MPa) and elongation (6.7%) as well as the highest welding efficiency (94%) after PWHT, among all of the fillers studied. However, the newly developed fillers adversely affected the impact toughness of the joints.

2.
Materials (Basel) ; 16(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241459

RESUMO

Al-Si-Mg 4xxx filler metals are widely used in aluminum welding owing to their excellent weldability and capability for strength enhancement by heat treatment. However, weld joints with commercial Al-Si ER4043 fillers often exhibit poor strength and fatigue properties. In this study, two novel fillers were designed and prepared by increasing the Mg content in 4xxx filler metals, and the effects of Mg on the mechanical and fatigue properties were studied under as-welded and post-weld heat-treated (PWHT) conditions. AA6061-T6 sheets were used as the base metal and welded by gas metal arc welding. The welding defects were analyzed using X-ray radiography and optical microscopy, and the precipitates in the fusion zones were studied using transmission electron microscopy. The mechanical properties were evaluated using the microhardness, tensile, and fatigue tests. Compared to the reference ER4043 filler, the fillers with increased Mg content produced weld joints with higher microhardness and tensile strength. Joints made with fillers with high Mg contents (0.6-1.4 wt.%) displayed higher fatigue strengths and longer fatigue lives than joints made with the reference filler in both the as-welded and PWHT states. Of the joints studied, joints with the 1.4 wt.% Mg filler exhibited the highest fatigue strength and best fatigue life. The improved mechanical strength and fatigue properties of the aluminum joints were attributed to the enhanced solid-solution strengthening by solute Mg in the as-welded condition and the increased precipitation strengthening by ß″ precipitates in the PWHT condition.

3.
Materials (Basel) ; 16(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37176397

RESUMO

Thermo-mechanical fatigue (TMF) is one of the most detrimental failures of critical engine components and greatly limits their service life. In this study, the out-of-phase TMF (OP-TMF) behavior in Al-Si-Cu 319 cast alloys microalloyed with Mo was systematically investigated under various strain amplitudes ranging from 0.1-0.6% and temperature cycling at 60-300 °C and compared with the base 319 alloy free of Mo. Cyclic stress softening occurred in both experimental alloys when applying the TMF loading, resulting from the coarsening of θ'-Al2Cu precipitates. However, the softening rate of the Mo-containing alloy was lower than that of the base 319 alloy because of its lower θ'-Al2Cu precipitate coarsening rate per cycle. The Mo-containing alloy exhibited a longer TMF lifetime than the base alloy at the same strain amplitude. Microalloying 319 alloy with Mo enhanced the TMF resistance mainly by slowing the coarsening of θ'-Al2Cu precipitates and providing supplementary strengthening from thermally stable Mo-containing α-dispersoids distributed in the Al matrix. The energy-based model was successfully applied for predicting the TMF lifetime with a low life predictor factor, which agreed well with the experimentally measured fatigue cycles.

4.
Materials (Basel) ; 16(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36837189

RESUMO

The effect of multipass friction stir processing (FSP) on the microstructure and mechanical properties of an AlSi10Mg alloy produced by laser-powder bed fusion was investigated. FSP was performed at a rotational speed of 950 rpm and traverse speed of 85 mm/min. The results indicated that FSP destroyed the coarse grain structure in the as-built AlSi10Mg by generating fine and equiaxed grain structures with shear texture components of A1*(111)[1¯1¯2] and A2*(111)[112¯], in addition to causing fragmentation and refinement of the Si networks. FSP reduced the tensile strength slightly but significantly improved ductility. One-pass FSP exhibited superior mechanical properties compared with the two- and three-pass scenarios. The higher strength of the one-pass sample was attributed to the strengthening mechanisms induced by the Si particles, which were grown by repeated FSP. The higher ductility of the one-pass sample was explained using the kernel and grain average misorientations. Furthermore, the post-FSP microstructural evolution and fracture behavior of the samples were discussed.

5.
Materials (Basel) ; 16(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36769954

RESUMO

A new strategy is proposed to modify the grain structure and crystallographic texture of laser-powder bed fusion AlSi10Mg alloy using multi-pass friction stir processing (FSP). Accordingly, 1-3 passes of FSP with 100% overlap were performed. Scanning electron microscopy and electron backscattered diffraction were used for microstructural characterization. Continuous dynamic recrystallization and geometric dynamic recrystallization are the governing mechanisms of grain refinement during FSP. The stir zones have bimodal grain structures containing large and fine grains. The multi-pass FSP caused a considerable increase in the volume fraction of the large-grained area in the stir zone, which contained higher values of low-angle boundaries and sharp shear texture components of B(11¯2)[110] and B¯(1¯12¯)[1¯1¯0]. The formation of low-energy grain boundaries in the stir zone and alignment of the low-energy crystallographic planes with the surface of the sample made the strategy of using multi-pass FSP a promising candidate for corrosion resistance enhancement in future studies. Moreover, the detailed evolution of the grains, texture components, grain boundaries, and Si particles is discussed.

6.
Materials (Basel) ; 16(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676566

RESUMO

The out-of-phase thermo-mechanical fatigue (TMF) behavior of the two Al-Si cast alloys most widely used for engine applications (319 and 356) were investigated under temperature cycling (60-300 °C) and various strain amplitudes (0.1-0.6%). The relationship between the microstructural evolution and TMF behavior was closely studied. Both alloys exhibited asymmetric hysteresis loops with a higher portion in the tensile mode during TMF cycling. The two alloys showed cyclic softening behavior with regard to the maximum stress, but an earlier inflection of cyclic stress was found in the 356 alloy. The TMF lifetime of the 319 alloy was generally longer than that of the 356 alloy, especially at higher strain amplitudes. All the precipitates (ß'-MgSi in 356 and θ'-Al2Cu in 319) coarsened during the TMF tests; however, the coarsening rate per cycle in the 356 alloy was significantly higher than that in the 319 alloy. An energy-based model was applied to predict the fatigue lifetime, which corresponded well with the experimental data. However, the parameters in the model varied with the alloys, and the 356 alloy exhibited a lower fatigue damage capacity and a higher fatigue damage exponent.

7.
ACS Appl Bio Mater ; 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103507

RESUMO

Multidrug-resistant bacteria are known to survive on high-touch surfaces for days, weeks, and months, contributing to the rise in nosocomial infections. Inducing antibacterial property in such surfaces can presumably reduce the overall microbial burden and subsequent nosocomial infections in hygiene critical environments. In the present study, a one-pot sol-gel process has been deployed to incorporate silver (Ag) and quaternary ammonium salt (QUAT) bactericides in a polymethylhydrosiloxane (PMHS) matrix. The Ag-PMHS-QUAT nanocomposite was coated on anodized aluminum (AAO/Al) by a simple ultrasound-assisted deposition process. The morphological features and chemical composition of the Ag-PMHS-QUAT nanocomposite have been characterized using SEM, XRD spectroscopy, and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) to confirm the formation of Ag-QUAT nanocomposites within the polymeric network of PMHS. The Ag-PMHS-QUAT nanocomposite coating on anodized aluminum oxide (AAO/Al) coupon exhibited superior antibacterial property with a 6-log bacterial reduction compared to the 5-log reduction for the commercially available antimicrobial copper coupon.

8.
ACS Biomater Sci Eng ; 8(3): 1087-1095, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35195412

RESUMO

Topography-mediated antibacterial surfaces that inactivate bacteria by physical contact have gained attention in recent years. Contrary to conventional antibacterial coatings, topography-mediated antibacterial surfaces do not suffer from coating instability and possible toxicity problems. In this study, a one-step hard anodization process has been deployed to fabricate a topography-mediated antibacterial aluminum surface. By optimizing anodization parameters, such as the concentration of the electrolyte, current density, and anodization time, desirable features of micronanoscale morphology were achieved. The optimum conditions of anodized aluminum that provided pores of a diameter of 151 ± 37 nm effectively killed 100% of E. coli bacteria.


Assuntos
Alumínio , Escherichia coli , Alumínio/farmacologia , Antibacterianos/farmacologia , Bactérias , Propriedades de Superfície
9.
Materials (Basel) ; 14(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34639888

RESUMO

In the present work, we investigated the possibility of introducing fine and densely distributed α-Al(MnFe)Si dispersoids into the microstructure of extruded Al-Mg-Si-Mn AA6082 alloys containing 0.5 and 1 wt % Mn through tailoring the processing route as well as their effects on room- and elevated-temperature strength and creep resistance. The results show that the fine dispersoids formed during low-temperature homogenization experienced less coarsening when subsequently extruded at 350 °C than when subjected to a more typical high-temperature extrusion at 500 °C. After aging, a significant strengthening effect was produced by ß″ precipitates in all conditions studied. Fine dispersoids offered complimentary strengthening, further enhancing the room-temperature compressive yield strength by up to 72-77 MPa (≈28%) relative to the alloy with coarse dispersoids. During thermal exposure at 300 °C for 100 h, ß″ precipitates transformed into undesirable ß-Mg2Si, while thermally stable dispersoids provided the predominant elevated-temperature strengthening effect. Compared to the base case with coarse dispersoids, fine and densely distributed dispersoids with the new processing route more than doubled the yield strength at 300 °C. In addition, finer dispersoids obtained by extrusion at 350 °C improved the yield strength at 300 °C by 17% compared to that at 500 °C. The creep resistance at 300 °C was greatly improved by an order of magnitude from the coarse dispersoid condition to one containing fine and densely distributed dispersoids, highlighting the high efficacy of the new processing route in enhancing the elevated-temperature properties of extruded Al-Mg-Si-Mn alloys.

10.
RSC Adv ; 11(60): 38172-38188, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498065

RESUMO

Infections caused by multidrug-resistant bacteria are a major public health problem. Their transmission is strongly linked to cross contamination via inert surfaces, which can serve as reservoirs for pathogenic microorganisms. To address this problem, antibacterial materials applied to high-touch surfaces have been developed. However, reaching a rapid and lasting effectiveness under real life conditions of use remains challenging. In the present paper, hard-anodized aluminum (AA) materials impregnated with antibacterial agents (quaternary ammonium compounds (QACs) and/or nitrate silver (AgNO3)) were prepared and characterized. The thickness of the anodized layer was about 50 µm with pore diameter of 70 nm. AA with QACs and/or AgNO3 had a water contact angle varying between 45 and 70°. The antibacterial activity of the materials was determined under different experimental settings to better mimic their use, and included liquid, humid, and dry conditions. AA-QAC surfaces demonstrated excellent efficiency, killing >99.9% of bacteria in 5 min on a wide range of Gram-positive (Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus faecium) and Gram-negative (streptomycin-resistant Salmonella typhimurium and encapsulated Klebsiella pneumoniae) pathogens. AA-QACs showed a faster antibacterial activity (from 0.25 to 5 min) compared with antibacterial copper used as a reference (from 15 min to more than 1 h). We show that to maintain their high performance, AA-QACs should be used in low humidity environments and should be cleaned with solutions composed of QACs. Altogether, AA-QAC materials constitute promising candidates to prevent the transmission of pathogenic bacteria on high-touch surfaces.

11.
Materials (Basel) ; 13(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238429

RESUMO

The feasibility and efficacy of improving the mechanical response of Al-Mg-Si 6082 structural alloys during high temperature exposure through the incorporation of a high number of α-dispersoids in the aluminum matrix were investigated. The mechanical response of the alloys was characterized based on the instantaneous high-temperature and residual room-temperature strengths during and after isothermal exposure at various temperatures and durations. When exposed to 200 °C, the yield strength (YS) of the alloys was largely governed by ß" precipitates. At 300 °C, ß" transformed into coarse ß', thereby leading to the degradation of the instantaneous and residual YSs of the alloys. The strength improvement by the fine and dense dispersoids became evident owing to their complementary strengthening effect. At higher exposure temperatures (350-450 °C), the further improvement of the mechanical response became much more pronounced for the alloy containing fine and dense dispersoids. Its instantaneous YS was improved by 150-180% relative to the base alloy free of dispersoids, and the residual YS was raised by 140% after being exposed to 400-450 °C for 2 h. The results demonstrate that introducing thermally stable dispersoids is a cost-effective and promising approach for improving the mechanical response of aluminum structures during high temperature exposure.

12.
ACS Appl Bio Mater ; 3(7): 4062-4073, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025481

RESUMO

Biofilm formation on both animate and inanimate surfaces serves as an ideal bacterial reservoir for the spread of nosocomial infections. Designing surfaces with both superhydrophobic and antibacterial properties can help reduce initial bacterial attachment and subsequent biofilm formation. In the present study, a two-step approach is deployed to fabricate silver-polymethylhydrosiloxane (Ag-PMHS) nanocomposites, followed by a simple dip-coating deposition on anodized Al. Ag-nanoparticles (Ag-NPs) are synthesized in situ within a PMHS polymeric matrix. Morphological features of Ag-PMHS coating observed by scanning electron microscopy shows heterogeneous micro-nano-structures. The chemical compositions of these coatings were characterized using X-ray diffraction and attenuated total reflection-Fourier transform infrared spectroscopy, which indicate the presence of a low-energy PMHS polymer. The as-synthesized Ag-PMHS nanocomposite demonstrated excellent antibacterial properties against clinically relevant planktonic bacteria with zone of inhibition values of 25.3 ± 0.5, 24.8 ± 0.5, and 23.3 ± 3.6 mm for Pseudomonas aeruginosa (P.A) (Gram -ve), Escherichia coli (E. coli) (Gram -ve), and Staphylococcus aureus (S.A) (Gram +ve), respectively. The Ag-PMHS nanocomposite coating on anodized Al provides an anti-biofouling property with an adhesion reduction of 99.0, 99.5, and 99.3% for Pseudomomas aeruginosa (P.A), E. coli, and S. aureus (S.A), respectively. Interestingly, the coating maintained a stable contact angle of 158° after 90 days of immersion in saline water (3.5 wt % NaCl, pH 7.4). The Ag-PMHS nanocomposite coating on anodized Al described herein demonstrates excellent antibacterial and anti-biofouling properties owing to its inherent superhydrophobic property.

13.
Materials (Basel) ; 12(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212590

RESUMO

The quench sensitivities of an AlSi10Mg alloy in permanent mold (PM) and high-pressure vacuum die (HPVD) castings were investigated with time-temperature-transformation and time-temperature-property diagrams using an interrupted quench technique. The quench-sensitive temperature range of the HPVD casting sample is 275-450 °C, and its nose temperature is 375 °C. The quench-sensitive range of the PM casting sample is 255-430 °C, and the nose temperature is 350 °C. The mechanical strength versus the cooling rate in both casting samples were predicted via a quench factor analysis and verified experimentally. The critical cooling rate of the HPVD casting sample is 20 °C/s whereas it is 17 °C/s for the PM casting sample. With a shorter critical time, higher nose temperature, and higher critical cooling rate, the HPVD casting sample exhibits a higher quench sensitivity than the PM casting sample. The differences in the quench sensitivities of the AlSi10Mg alloy due to the different casting processes is explained via the different precipitation behavior. At the nose temperature, coarse ß-Mg2Si precipitates mainly precipitate along the grain boundaries in the HPVD casting sample, whereas rod-like ß-Mg2Si precipitates distribute in the aluminum matrix in the PM casting.

14.
Materials (Basel) ; 12(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174255

RESUMO

The use of quality index charts is considered as an effective mean for evaluating the mechanical performance of Aluminum alloys for industrial engineering applications. The current study was carried out to investigate the influences of multiple-interrupted temperatures aging and quenching media (water versus air) on the quality index performance and precipitations evolution of A357 Aluminum semi solid alloys. Regarding the lack of similar investigations applied on such alloys, the quality index charts were generated for Al-Si-Mg semi solid castings based on its tensile properties. These charts are used to determine the quality index, in MPa, as a simple mean for compromising the strength and ductility together in one value using the Drouzy model. The multiple temperatures aging cycles were applied to improve the quality index values of Al-Si-Mg semi solid alloys for enhancing its characteristic and performance to resist the mechanical failures relating to automotive dynamic parts. The evolution of Mg2Si hardening precipitates, formed for specific thermal aging cycles, was investigated using transmission electron microscopy (TEM). The results obtained in this work revealed that the optimum quality index values were obtained by the application of T6-thermal under-aging treatment cycles. The regression models, using a statistical design of experiments, indicated that the optimum strength and high-quality index values were obtained by the application of interrupted thermal aging cycles, mainly C2,3-T6/T4/T7 conditions.

15.
ACS Omega ; 2(11): 8198-8204, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457363

RESUMO

Ultraviolet (UV)-durable superhydrophobic nanocomposite thin films have been successfully fabricated on aluminum substrates by embedding cobalt stearate (CoSA)-coated TiO2 nanoparticles in a hydrophobic polymethylhydrosiloxane (PMHS) matrix (PMHS/TiO2@CoSA) using the sol-gel process. When compared to the sharp decrease of water contact angle (WCA) on the superhydrophobic PMHS/TiO2 thin films, the PMHS/TiO2@CoSA superhydrophobic thin films exhibited a nearly constant WCA of 160° under continuous UV irradiation for more than 1 month. The designed scheme of the TiO2@CoSA core-shell structure not only increased the hydrophobic properties of the TiO2 nanoparticle surface but also confined the photocatalytic efficiency of TiO2 nanoparticles. A plausible model has been suggested to explain the UV-durable mechanism of the superhydrophobic nanocomposite thin films based on PMHS/TiO2@CoSA. Furthermore, the elongated lifetime in the exposure of the solar light imparts this superhydrophobic nanocomposite thin film with potential practical applications where UV-resistant properties are emphasized including corrosion-resistant building walls, anti-icing airplanes, self-cleaning vehicles, and so forth.

16.
Materials (Basel) ; 9(7)2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28773658

RESUMO

The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s-1). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.

17.
Materials (Basel) ; 8(9): 6455-6470, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28793574

RESUMO

Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B4C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B4C volume fraction. Al-B4C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B4C particles could also be responsible for the lower corrosion resistance of the composites.

18.
Materials (Basel) ; 7(1): 244-264, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-28788454

RESUMO

The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s-1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s-1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s-1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...